Abstract: Recent breakthroughs in artificial intelligence (AI) are increasingly driven by systems orchestrating multiple large language models (LLMs) and other specialized tools, such as search engines and simulators. So far, these systems are primarily handcrafted by domain experts and tweaked through heuristics rather than being automatically optimized, presenting a substantial challenge to accelerating progress. The development of artificial neural networks faced a similar challenge until backpropagation and automatic differentiation transformed the field by making optimization turnkey. Analogously, here we introduce TextGrad, a versatile framework that performs optimization by backpropagating LLM-generated feedback to improve AI systems….
Read it here: https://www.nature.com/articles/s41586-025-08661-4
